Journal of Information Systems Engineering and Business Intelligence-PENGELOMPOKAN WILAYAH MADURA BERDASAR INDIKATOR PEMERATAAN PENDIDIKAN MENGGUNAKAN PARTITION AROUND MEDOIDS DAN VALIDASI ADJUSTED RANDOM INDEX

12:59 PM
Journal of Information Systems Engineering and Business Intelligence


Abstrak

Distribution of education in Indonesia has become government's attention for a long time. But until  now, education in Indonesia is still not evenly distributed. This can be seen from the low value of Participation  Rough figures and net enrollment ratio in certain areas as well as uneven educational facilities. The purpose of  this research is to provide information to local authorities about the state of education in local region to  produce an appropriate policy regarding development of educational infrastructure and teachers assistant  distribution. Clustering is a data mining method that divides data into several groups with the same object  characteristics. This research used Partition Around Medoids methods with 3 distance measure that contain  Manhattan, Euclidean and Canberra distance. Adjusted Random Index used to measure the quality of  clustering results. From 3 times sampling, better value of ARI Euclidean distance 0.799, Manhattan distance  0.738 and Canberra distance 0.163 while the best clustering obtained is Euclidean distance with value of ARI  0.825 and compatibility with the original label 83.33%. it is produces high equity group composed of 11  districts with equity groups are composed of 15 districts and low equity group consists of 46 sub-districts.

Keywords—Indicator of Educational Equity, Clustering, Partition Around Medoid, Distance Measure,  Adjusted Random Index .

Hasil yang diperoleh dari penelitian ini dapat  disimpulkan sebagai berikut:
Metode Partition Around Medoid (PAM) mampu diterapkan untuk memecahkan kasus pengelompokan wilayah / kecamatan berdasar  indikator   pemerataan   pendidikan   di 4 wilayah
kabupaten di Madura melalui pihak Dinas  Pendidikan Kabupaten Bangkalan.
Pemilihan algoritma distance measure yang tepat untuk kasus pengelompokan memiliki  pengaruh significant terhadap hasil clustering.
Dari 3 kali ujicoba diperoleh rata-rata nilai  ARI untuk PAM menggunakan Euclidean distance  sebesar 0.799, diikuti oleh Manhattan distance  dengan rata-rata sebesar 0.738 dan   rata-rata   ARI
terendah dimiliki oleh PAM dengan Canberra  distance sebesar 0.163.
Hasil analisa di atas menunjukkan bahwa  kinerja PAM Manhattan dan PAM Euclidean lebih  baik dibandingkan PAM Canberra.
Semakin besar nilai ARI maka semakin  bagus kinerja suatu metode clustering.
Hasil  Clustering  adalah  Dari  4 kabupaten dan 72 kecamatan di wilayah Madura, terdapat 11  kecamatan masuk ke dalam cluster kategori tinggi,
15  kecamatan  masuk  ke  cluster  sedang  dan  46



PENGELOMPOKAN WILAYAH MADURA  BERDASAR INDIKATOR PEMERATAAN  PENDIDIKAN MENGGUNAKAN PARTITION  AROUND MEDOIDS DAN VALIDASI ADJUSTED RANDOM INDEX .pdf .ppt
Previous
Next Post »